Phenomenal cosmic power, itty bitty living space

Wouldn’t it be great to take the universe in the lab? Astronomy is one of the most captivating parts of physics. I mean, one can’t scoff at the idea of unveiling the mysteries of the cosmos. Unfortuntely, galaxies and black holes don’t exactly cooperate as far as experimenting goes.

A group of physicists is working on a solution.

As it turns out, bottling the immense cosmos in a handful of atoms is but one of the amazing properties of graphene. Graphene is a very thin sheet of carbon, just a single atom thick, all arranged in hexagons like cells in a beehive. Normally, then, each cell has six atoms, but scientists can add or remove one here and there, making some cells with five or seven.

CC-BY-SA AlexanderAlUS via commons

The normal structure of graphene lets a few electrons (one per atom, precisely) rather free to roam around. Cells with one atom more or less mess up this nice order. Electrons can’t just skip around carefree, instead they are attracted to five-atom cells and repelled by seven-atom ones. This creates a little bit of electric current in the material.

Big whoop.

Here comes the cool part, though: this current seems to bend exactly as how spacetime does according to General Relativity. So, appropriately placing atoms, you could simulate fantastically large cosmic phenomena in teeny tiny devices.

An example of wormhole in two-dimensional space-time. credit:

For example, the researchers connected two sheets of graphene to simulate a wormhole—the hypothetical tunnel connecting two far-apart regions of spacetime, like in Interstellar.

The research is still just theoretical, but a tangible prototype should be just around the corner. The researchers say that it should have plenty of applications for electronic devices.

Personally, I’m also interested in holding the (ok, simulated) forces of gravity in the palm of my hand.

If you want more
  • The study isn’t published on journals yet. As far as I understand it’s about to be, in the meantime you can find the manuscript here

Cover photo: CC-BY-SA Karl Wienand, (using felixioncool, WikiImages, skeeze)

Two equations are enough to go to the Moon

Even though going to the Moon seems hard (I think someone mentioned it), it actually takes just two simple rules. Both were discovered by world-renowned physicist and a-hole Isaac Newton, whose birthday is at some point during the holidays.

What a jolly festive fellow! credit:

First off, the mighty a=F/m (more widely known as F=m a). It simply means that dividing the force (F) acting on an object by its mass of the object (m), gives by how much the object accelerates (a). This general formula tells you your rocket will move, so it’s clearly rather important for your journey to the moon.

Not only that, it’s also at the core of how rockets move at all. In fact, rocket propulsion is based on that weird “equal and opposite reaction” business you probably heard of.

Take a balloon and inflate it: if you let it go, it flies away (making a fart noise). The air inside it is pushed out by pressure. However, if you take the balloon and air combined, no new force is acting when you release the balloon, so, as a whole, balloon and air must have zero acceleration. Because the balloon is pushing air out, there must be a force as intense (equal) pushing back (opposite) on the balloon. Rockets are the same, just with fancy tech to be more efficient.

CC-BY-ND mfrascella/flickr

The other equation Newton found was the one to calculate the force of gravity. That was pure genius. And it’s pretty important for your lunar journey, since gravity most of the force you’ll have to navigate: Earth’s, chaining your rocket to the ground and yanking it off the sky, and the Moon’s, tugging it to its destination. Know gravity’s workings and you can start charting your way to the stars.

Easy, ain’t it?

Not so much: astronauts—freaking jet-fighter pilots with engineering degrees—take theoretical classes to learn how to steer spacecrafts. And even before that, you’ll need a spacecraft. It’ll need enough oomph to escape Earth, but be sturdy enough to not explode in the process, and take you back in one non-crispy piece.

That’s why Newton never went to space.

Still, at its core, space travel is all about his equations. All the research from all the super-smart people in space agencies: it’s all aimed at improving our use of those two simple rules.

Thanks and happy birthday, you insufferable genius! Whenever it is.

And to you all: happy holidays!
If you want more
  • If you get a chance, watch episode 3 of Cosmos: you haven’t heard about Newton’s work on gravity if you haven’t heard Neil deGrasse Tyson tell you about it
  • Space tech might be on the way to surpass Newton. But it’s all very vague—and frankly weird

Cover photo: CC0 27707/pixabay