Cassini: the end of a legend

20 years after it launched, the NASA spacecraft Cassini ends its mission today. Its 13 years in orbit culminate in one last mission: to dive into the planet’s atmosphere, while still measuring and transmitting data.

Continue reading


Enceladus: a song of ice and tides

An artist impression of Cassini diving into Enceladus water plumes. credit: NASA/JPL

Cassini will terminate its 20-odd-years-long mission in September. But it’s determined to go out with a bang. In yesterday’s press conference, NASA announced that the probe, during a 2015 flyby of Saturn’s moon Enceladus, found clues that the ocean within the icy moon has almost all we think it needs to spark life. Continue reading

Why galaxies are flat (and Earth isn’t)

The universe teems with flat stuff. Most galaxies, including the Milky Way, are quite flat and (relatively) thin pancakes of stars. All planets of the solar system (real planets, not Pluto) orbit pretty much on the same plane. Unsurprisingly, it’s no coincidence.

The plane along which all (real) planets orbit around the Sun. credit:

The plane along which all (real) planets orbit around the Sun. credit:

Galaxies and star systems form the same way: coagulating clouds of gas—though at obviously different scales.

Imagine throwing a plume of gas or atoms in space. Push them in random directions: some one way, some another, some up, some down. Unless you cheated, they bump into each other and, because of gravity, clump together. When the atoms didn’t collide head-on (ie, most of the times), these clumps spin. Clumps themselves attract each other and collide into bigger spinning blobs.

After each collision, the atoms and chunks of atoms align, canceling out all of their opposing motion, but keep spinning (in fancy physics terms, it’s called angular momentum conservation). You can see the blobs in the video up here as a forming galaxy seen from “above”.

Slowly but surely, the whole cloud flattens to a plane. If it’s a galaxy, it forms stars on that plane, whereas in the Solar System it became that begot the orbital plane.

Other planetary systems and galaxies spin too, but each inclined its own way, because they formed from different clouds of gas.

A lot of galaxies, photographed by the Hubble Space Telescope. They’re spinning in every which way. Credit: NASA/wikimedia

But if planets and stars also form by congealing gas, why aren’t they flat as well?

The reason is that planets and stars are much denser than galaxies. Being closer to each other, their clumps of gas feel a stronger gravitational pull to the center of the blob, that wins over the mechanism that would keep them flat. So planets and stars become spheres.

Saturn formed across all the stages: most matter coalesced in the huge (clearly spherical) planet, but a little formed some of its many more or less round moons, finally the last faint leftovers ended up as the iconic, extremely flat rings.

Round, flat, round: Saturn, its rings, and four of its many moons. Credit: NASA/wikimedia

If you want more
  • A long but excellent post on planets, galaxies, and roundness by the great Neil DeGrasse Tyson
  • Minutephysics has a cool video that explains this more technically, and shows why it can only happen in a 3D universe


Cover photo: CC0 WikiImages/pixabay