What is graphene?

Want to win a Nobel prize while discovering a material that’s cheap, transparent, flexible but resistent, and an astonishing electric conductor? Grab a pencil and a roll of adhesive tape. I’m serious.

Continue reading

Advertisements

A singular post

You may have read around that a black hole “is a singularity”. But, if you are interested in artificial intelligence, you also heard about The Singularity, when robots will surpass us. So… robots in black holes? Actually, it all makes sense. Continue reading

Enceladus: a song of ice and tides

An artist impression of Cassini diving into Enceladus water plumes. credit: NASA/JPL

Cassini will terminate its 20-odd-years-long mission in September. But it’s determined to go out with a bang. In yesterday’s press conference, NASA announced that the probe, during a 2015 flyby of Saturn’s moon Enceladus, found clues that the ocean within the icy moon has almost all we think it needs to spark life. Continue reading

Phenomenal cosmic power, itty bitty living space

Wouldn’t it be great to take the universe in the lab? Astronomy is one of the most captivating parts of physics. I mean, one can’t scoff at the idea of unveiling the mysteries of the cosmos. Unfortuntely, galaxies and black holes don’t exactly cooperate as far as experimenting goes.

A group of physicists is working on a solution. Continue reading

Quantum… jokes?

Many jokes, particularly puns and one-liners, rely on on setting up expectations, just to subvert them, on double meanings and ambiguity. Take this one:

I would tell you a chemistry joke, but I wouldn’t get any reaction.

Continue reading

What the heck is a boson?

Particles are strange. In more than one way: for example they behave as if they were spinning, like a top. But they aren’t moving at all. Even if they were, trying to imagine how some of them “spin” would probably melt your brain. The property that measures this “spinning” (though nothing is moving at all here!) is, creatively, called spin.

Continue reading

Circles, social circles and Pi Day

March 14 (or 3/14) is Pi Day. During this somewhat whimsical holiday, science nerds around the globe eat pies and perform needlessly complicated operations to celebrate the fact that the ratio between a circle’s circumference and diameter is 3.14152653… It may be a little confusing from the outside, but that’s sort of the point.

There are several reason behind Pi day, I think: Pi is a good symbol for science, it’s a fantastically inclusive one, and it’s the perfect thing to turn into a nerdy holiday.

Let’s start from its symbolic value. Pi is very recognizable, because most people have run into it at some point in their education. That holds also for a lot of important physical and mathematical constants. Physical constants, however, are not really absolutely constant (their value depending units of measure), plus they are often unsavorily large or very small.

Mathematical constants, instead, are just numbers, like 0 and 1. So why not celebrate excellent numbers like those? Well, Pi has more depth. Nobody knows all of Pi because it’s an infinite, ever-changing sequence of digits. Irrational numbers like Pi (or the golden ratio, e, square root of 2) are elusive and fascinating, but none makes as good a holiday as Pi.

Few (if any) of them can be as easily turned into a date. Then, none is as well-known as Pi. This number is freakin’ everywhere: from school geometry to quantum mechanics, from pendulums to number theory and probability.

Its ubiquity is a testament of how circles enter everywhere in science: whether something involves actual circles (or spheres) or trigonometry (which is just badly disguised circles), Pi is bound to pop up. Any oscillation, from a pendulum to the waves in the sea, to the wave function of quantum mechanics, calls for some trigonometry, and its Pi. Actually it shows up so much in quantum mechanics that scientists found ways to avoid having to write it.

In statistics and mathematics, Pi often comes out through calculations that involve the famous Gaussian probability distribution. This amazing function describes an unbelievable number of phenomena, from the result of rolling many many dice to the distribution of people’s height.

Students organized by height in an old experiment: they follow the characteristic bell shape of a Gaussian distribution.

The Gaussian is circles’ ninja way to come back in the picture (because of details in the math: won’t bore you with that). And one can tell they came through, you guessed it, from Pi.

So mathematician, physicists, engineers and all scientists alike are familiar with this fantastic number and use it practically every day. At the same time, Pi appears almost only in scientific contexts. As a symbol, it includes every branch of science, nothing more and nothing less.

This is also why it’s a great nerdy holiday. One of my favorite definition (-ish) of nerd comes from John Green:

What is nerdier, then, than celebrate the fact that a date looks like the ratio of a circle’s circumference to its radius? In other words, it’s not really about Pi: it’s about meeting and eating pies and finding creative new ways to calculate the ineffable number.

As Christmas is actually a day about love and family, Pi day is actually about community, nerd identity, and being unironically enthusiastic about science and math. There aren’t many such days, let’s cherish this one.

Cover photo: CC-BY Bill Ward/flickr